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Influence of noise on power-law scaling functions and an algorithm for dimension estimations

Hans Oltmans* and Peter J. T. Verheijen
Department of Chemical Process Technology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherla
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The influence of Gaussian noise on power-law scaling functions of interpoint distances has been investi-
gated. These functions appear in the estimation of the correlation dimensiona of the attractor of a chaotic
dynamical system, where the relative number of pairwise distances smaller thanr ~correlation integral! theo-
retically scales asr a. Assuming the noise added to each measurement is independent and the distribution of the
distances is governed completely by the power-law scaling rule in the noise-free case, the scaling functions of
the perturbed distances have been calculated exactly. By considering the limiting cases for small and large
distances, a method is presented to estimate the variance of the added noise and approximations of the scaling
functions, which are suitable for data analysis, are derived. Dimension estimation can be improved by applying
a nonlinear fit procedure to histograms of interpoint distances instead of the usual linear regression on log-log
plots. @S1063-651X~97!04506-6#

PACS number~s!: 02.70.2c, 05.45.1b, 82.40.Bj
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I. INTRODUCTION

A. Spatial correlation of reconstructed attractors

In the analysis of chaotic behavior of dynamical system
the correlation dimension of an attractor is an import
characteristic. Of the various definitions of fractal dime
sions ~see, e.g.,@1#!, it is the most accessible one for a
experimentalist@2,3#. The concept of correlation dimensio
is based on the fact that the pairwise distancer between
points of the attractor satisfies the scaling rule

n~r !}r a21, ~1!

which holds for small values ofr . Heren(r ) is the number
of pairs of points with distancer and a is the correlation
dimension. The correlation dimension is a measure of
geometric complexity of the dynamics of the system@4,5#.

In experiments, the attractor is reconstructed from a ti
series of measurements of a certain variable, being ‘‘rep
sentative’’ for the state of the system, using the method
delay-time embeddings@6,7#. The correlation dimension is
then often calculated by determining the relative number
pointsC(r ) with a range smaller thanr for various values of
r and plotting lnC(r) against lnr. This should yield a graph o
a straight line with slopea. If the points are reconstructe
from a time series, the dimension of the reconstruction sp
d, called embedding dimension, should be big enough fo
good representation of the state of the system. In theory,
slope of the graph will converge toa with increasing em-
bedding dimension@8#.

For small values ofr , a deviation from the power-law
behavior is observed because measurements are perturb
noise @9#. The curves bend off to a larger slope with a
associated dimensiond, which can be explained by the fac
that, on small scales, the dynamics is determined by no
which has an infinite dimension if it is uncorrelated nois

*Present address: Joh. Enschede´ B.V., POB 464, 2000 AL Haar-
lem, The Netherlands.
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Figure 1 shows an example of the influence of Gauss
noise, with standard deviation varying from zero~noise-free
case! to 0.1, on correlation integral curves of the He´non at-
tractor ~a well-known numerical example that we will us
here, witha'1.22). It can be observed that the scaling b
havior is almost entirely destroyed for the biggest no
level.

In this paper, equations are derived for the deviation fr
the power law caused by adding uncorrelated Gaussian n
to the measurements. In contrast with many numerical
periments to determine the statistical properties of dimens
estimations~see, e.g.,@10,11#!, a statistical approach is use
here, assuming the power law to hold exactly in the unp
turbed case. A useful review of statistical methods in dim
sion estimations is given by Isham@12#.

B. Outline of the approach

In Sec. II, analytical expressions will be derived for th
~non-normalized! probability density functions~PDFs! of the
distances in the presence of independent Gaussian n
added to the measurements. These expressions give a
correct description of the scaling behavior than Eq.~1! does

FIG. 1. Correlation integral curves for a time series of 10 0
points of the He´non map with added Gaussian nois
(s50,0.05,0.1). The embedding dimensiond56.
1160 © 1997 The American Physical Society
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56 1161INFLUENCE OF NOISE ON POWER-LAW SCALING . . .
and simulations can be made when the properties of the
tractor and the standard deviation of the noise are knowa
priori . In the rest of this paper we will refer to the non
normalized PDFs as ‘‘scaling functions.’’ We say, th
f x(x) is a scaling function of the quantityx if the PDF of the
variablex is proportional tof x(x) on a certain interval, say
0,x,x0. Outside this interval, the PDF is unknown.

Asymptotic approximations for large and small values
r are then derived, which can be useful in the analysis
measured data. As we shall see, the approximations ar
the form

f r~r !'H A~d,a,s!r d21PXS rs D 2C ~0,r,r l !

r a21QXS s

r D
2C ~r h,r,r 0!.

~2!

Here s is the standard deviation of the noise,A is some
constant, andP(x) and Q(x) are polynomials~truncated
power series! of the form 11p1x1p2x

2, where the coeffi-
cientspk are dependent ond anda. The boundariesr l and
r h demarcate the validity of the two approximations. All ne
essary input for the nonlinear regression procedure, adjus
Eq. ~2! to fit the data, is given in Sec. III.

Section IV presents numerical experiments. The meth
of estimatings and a are applied to a time series of th
Hénon map and to a time series of pressure measuremen
a fluidized bed column. Finally, in Sec. V conclusions a
drawn about the usefulness of the analysis.

II. THEORY

A. Perturbation of fixed Euclidean distance by added noise

It has been illustrated above that the distribution of d
tances is governed by a cumulative distribution funct
~CDF! that is proportional tor a on the intervalr,r 0, the
‘‘scaling region.’’ In dimension estimations it is usual t
compute the sample CDF~or ‘‘correlation integral’’! C(r )
from the data and obtaina as the slope of a log-log plot
Alternatively, a maximum likelihood estimate fora as a
function of r 0 can be found@4#.

In these procedures, all distances larger thanr 0 are dis-
carded. However, the introduction of this cutoff length
somewhat artificial. In this theoretical treatment the pow
law is assumed to hold exactly for all distances. We wan
calculate the effect of the addition of noise on the scal
behavior. Therefore,r 0 is supposed to be infinite and we u
the ~unbounded! scaling functions

f r~r !5r a21. ~3!

Any fractal dimension is invariant to the choice of th
norm. There are, for example, practical advantages in tak
the L` norm @13,14#. However, the Euclidean norm~or L2

norm! is preferred because its square value( i51
d (xi2yi)

2,
considered as a stochastic variable, has a known distribu
in many cases. Herexi ,yi are the Cartesian coordinates
the pointsxW ,yW in d-dimensional space. In the case that t
points are not perturbed by noise, the scaling function of
squared distances:5r 2 equals
t-
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g~s!5 f r~As!UdAs
ds

U5 f r~As!

2As
5
1

2
sa/221. ~4!

In the present study it is assumed that each coordinat
every point~each measurement! is perturbed by adding inde
pendent normally distributed noise with mean 0 and varia
s2. Here the perturbed quantities~which are observed in an
experiment! will be denoted by a tilde, for example,

xĩ5xi1exi, ~5!

with exi;N(0,s2). The observed value of the squared d
tance is

s̃5 r̃ 25(
i51

d

~xĩ2yĩ !
25(

i51

d

~xi2yi1e i !
2

5s12(
i51

d

~xi2yi !e i1(
i51

d

e i
2 , ~6!

wheree i :5exi2eyi, which has aN(0,2s
2) distribution. The

second and third terms on the right-hand side~RHS! of this
equation describe the perturbation of the square of the
clidean distancer due to the addition of the noise. We de
duce directly from the distribution ofe i that

E~ s̃ !5s12s2d,

Var~ s̃ !58s2~s1s2d!. ~7!

In this calculation we have used the fact that the o
moments of a standardized normal variabled;N(0,1) van-
ish and the even moments are given byE(d2n)
5(2n21)!!:5)m51

n (2m21).
So, on average, the square of the distance between

points increases due to the addition of noise. This can
checked easily for the cased51. Each direction has a con
tribution of 2s2.

B. Derivation of perturbed scaling functions

Until now, the distancer had been assumed to be fixe
We know, however, that it satisfies the scaling rule@Eq. ~1!

or ~3!# and try to find the corresponding scaling law forr̃ ,
the perturbed distance.

For convenience, a coordinate transformation is app
such that

~xi2yi !5H r ~ i5d!

0 ~ iÞd!.
~8!

This means that the difference vectorxW2yW is taken in an
arbitrary direction~thexd direction!. This is allowed because
there is rotation invariance on account of the independe
of the noise. The expression for the observed squared
tance of Eq.~6! can then be simplified to

s̃5~r1e!21 (
i51

d21

e i
2 , ~9!
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1162 56HANS OLTMANS AND PETER J. T. VERHEIJEN
where the indexd has been omitted for notational conv
nience. To investigate scaling properties ofs̃ , we will first
calculate the scaling function of the quantity

u:5ur1eu ~10!

under the assumption thatr ande are independent stochast
variables. Subsequently, the second term on the RHS of
~9! is considered. The PDF ofe is given by

p~e!5
1

2sAp
e2e2/4s2 ~11!

and the scaling functionf r(r ) follows from Eq. ~3!. Al-
though this is no PDF, the influence of the addition ofe to
r can be studied by treating it as being a probability den
function. Our basic assumption is thatr ande are indepen-
dent stochastic variables. Therefore, to obtain the sca
function f u(u) of u, the functionp(e) f r(r ) is integrated
along curves of constantu in the (e,r ) semiplane. A constan
value ofu corresponds to two half lines in this plane, leavi
the e axis from the points (2u,0) and (u,0) at an angle of
3p/4. The integral is

f u~u!5E
2`

2u

p~e! f r~2u2e!de1E
2`

u

p~e! f r~u2e!de

5E
0

`

f r~r !p~2u2r !dr1E
0

`

f r~r !p~u2r !dr

5
1

2sAp
E
0

`

r a21@e2~r1u!2/4s21e2~r2u!2/4s2#dr.

~12!

Although f r(r ) is not bounded, these integrals do conver
because for large values ofr the exponential functions de
crease faster than the reciprocal of the power functionr a21

~for anya.0). Note that sinceu is non-negative, the secon
term on the RHS is much larger than the first because
exponential function attains its maximum atr5u. The inte-
gral has been solved usingMATHEMATICA @15#:

f u~u!5
sa21

2Ap
e2u2/4s2

u

sFG~a!US 11a

2
,
3

2
,
u2

4s2D
12aGS 11a

2 DM S 11a

2
,
3

2
,
u2

4s2D G . ~13!

HereU(a,b,z) @sometimes denoted asC(a,b,z)# is the con-
fluent ~or degenerate! hypergeometric function and
M (a,b,z) @sometimes denoted asF(a,b,z) or 1F1(a,b,z)#
is Kummer’s confluent hypergeometric function~see@16#, p.
504, and@17#, pp. 337 and 1064!. Using a relation between
the functionsU(a,b,z) andM (a,b,z) and the doubling for-
mula of the gamma function~see@17#, pp. 1058 and 938!,
the functionf u(u) is written in a more compact form
q.

y

g

e

e

f u~u!5
~2s!a21

Ap
e2u2/4s2GS a

2 DM S a

2
,
1

2
,
u2

4s2D . ~14!

Though the RHSs of Eqs.~13! and~14! are identical, in some
calculations it is more convenient to use the more com
cated expression of Eq.~13!, which avoided artificial singu-
larities usingMATHEMATICA , version 2.0.

Note that u equals the observed distance in the ca
d51; see Eqs.~9! and ~10!. For d.1, the influence of the
remaining noise termse1 , . . . ,ed21 will be taken into
account. The scaling function ofu25(r1e)25:w fol-
lows from Eq. ~14! by the transformation f w(w)
5f u(Aw)/(2Aw):

f w~w!5
~2s!a21

2Apw
e2w/4s2GS a

2 DM S a

2
,
1

2
,
w

4s2D . ~15!

The sum of the remaining noise terms in Eq.~9! is denoted
by v. The quantityv/2s2 has ax2 distribution with d21
degrees of freedom. The PDF ofv is given by

f v~v !5
1

2s2 f x
d21
2 S v

2s2D5
v ~d23!/2

~2s!d21GS d21

2 De
2v/4s2.

~16!

This is called a gamma distribution with scale parame
1/4s2 and shape parameter (d21)/2.

The observed squared distance is the sum of the n
negative quantitiesw andv. They are independent because
has been assumed that the noise contributions are inde
dent of each other and ofr . Consequently, the scaling func
tion is calculated from

f s̃~ s̃ !5E
0

s̃
f w~w! f v~ s̃2w!dw5E

0

s̃
f w~ s̃2v ! f v~v !dv.

~17!

Substitution of the functions of Eqs.~15! and~16! in Eq. ~17!
finally gives an expression for the scaling function ofs̃ , the
observed squared distance:

f s̃~ s̃ !5
1

2~2s!d2a

GS a

2 D
ApGS d21

2 D e
2 s̃ /4s2

3E
0

s̃
M S a

2
,
1

2
,
w

4s2D ~ s̃2w!~d23!/2

Aw
dw

5
s̃d/221

2~2s!d2a

GS a

2 D
GS d2D

M S d2a

2
,
d

2
,2

s̃

4s2D . ~18!
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FIG. 2. ~a!, ~b!, and~c! Graphs off s(s), the scaling function of the observed squared distance, fora51.2, 2.4, 4.8, and various value
of d with s51/2. Also g(s)51/2sa/221, the scaling function of the exact squared distance@Eq. ~4!#, and f w(s), the scaling function of
(r1e)2 @Eq. ~15!#, are plotted.~For a51.2, the two functions are too close for both to be shown.! ~d!, ~e!, and ~f! Graphs ford53,5,8,
plotted on a double logarithmic scale.
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Figure 2 shows graphs of this function for various values
a andd ~with d.a); s is kept constant at 1/2 because t
only effect of changings is a rescaling of the graphs: I
f s̃( s̃) for s5 1

2 is denoted byf̂ ( s̃), then it follows that
f s̃( s̃)5(2s)a22 f̂ ( s̃ /4s2). The distance has the same un
as the measured variablex; in this text, however, for gener
ality, the distance and the scaling functions are treated
dimensionless variables.

It is common to visualize the scaling function

f r̃ ~ r̃ !52 r̃ f s̃~ r̃
2! ~19!

as a function of the distancer̃ , with a double logarithmic
f

as

scale. This should be a straight line with slopea for s→0,
as confirmed in the graphs of Fig. 2.

C. Limiting behavior of scaling functions

The expression of Eq.~18! is rather complicated. Al-
though some presently available fit programs can deal w
almost any model function, it is useful to obtain some insig
in the global properties of the scaling functions by consid
ing their asymptotic behavior. In doing so we gain furth
understanding of the general shape of the curves in Fig.

Here we will give approximations of the scaling functio
which are valid for small (r,r l) and large (r.r h) values of
the distance, compared to the noise level. For the mom
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we do not specify the values ofr l andr h exactly in terms of
s andd, but we assume that they are both ‘‘of the order
s.’’ By using the Taylor-series expansion of Kummer
function ~see@16#, p. 504!, we obtain the approximations o
the scaling functionf s(s) of Eq. ~18! in both regions;f r(r )
then follows from the transformation of Eq.~19!. From now
on, the tilde is omitted and we will only consider the o
served quantities: Sor denotes the observed distance ands
its square. The resulting approximations are

f r~r !5

GS a

2 D
~2s!d2aGS d2D

r d21F12
d2a

d S r 2

4s2D

1
~d2a!~d2a12!

2d~d12! S r 2

4s2D 21••• G ~20!

for small distances (0,r,r l) and

f r~r !5r a21F12
~a22!~d2a!s2

r 2

1
~a22!~a24!~d2a!~d2a12!s4

2r 4
1••• G ~21!

for large distances (r h,r,r 0). Note that the lowest-orde
approximation isr a21 for large distances and a consta
times r d21 for small distances, as expected. The constan
Eq. ~20! is the scale factor between the short-distance and
long-distance power relation. This factor is a function ofd,
a, ands.

For large distances, the first two terms of the expansio
the scaling function of the squared distance,

f s~s!5
sa/221

2 F12
~a22!~d2a!s2

s
1••• G , ~22!

are equal to the first two terms of the expansion of
function 1

2@s2(d2a)2s2] a/221. This is just
g„s2(d2a)2s2

…, where g( ) is the unperturbed scalin
function as introduced in Eq.~4!:

g„s2~d2a!2s2
…5g~s!2g8~s!~d2a!2s21•••

5
sa/221

2 F12
~a22!~d2a!2s2

2s
1••• G .

~23!

It follows that, in the first-order approximation for large di
tances, the scaling functions are shifted versions of the no
free scaling function of Eq.~4!, the shift being equal to
(d2a)2s2. This property can be verified by inspection
Fig. 2.

In an application, numerical values for the boundaries
the regions, in which our approximations are valid, have
be chosen. Because no general directives exist, we have
some more or less heuristic arguments.
f

in
he

of

e

e-

f
o
sed

The boundaryr 0, the distance below which the power-la
scaling rule is valid, is generally unknown. It is certain
much smaller than the total diameter of the attrac
maxm,nuxW (m)2xW (n)u, which is, of course, a function of the
embedding dimension. We determiner 0 by inspection of the
usual correlation integral curves.

If the approximated scaling functions are used instead
the exact model function, we also need values forr l , the
distance below which the distribution is ‘‘governed’’ by th
noise, andr h , the distance above which the influence of t
noise becomes negligible. The boundariesr l and r h depend
ond ands. The latter dependence makes things complica
becauses is one of the parameters to be estimated.

In our analysis, the boundaries have been determined
using global properties of thex2 distribution. If the distances
were caused by noise alone, which can be assumed to be
for the distances that are originally very small, then the qu
tity x:5r 2/2s2 has ax2 distribution withd degrees of free-
dom. ThenE(x)5d and Var(x)52d. This means that the
‘‘typical noise distance’’ is r n :5sA2d and its ‘‘spread
around the mean’’ is approximated b
Dr n5A2sDAx'A2sDx/2Ax, which just equalss if x is
replaced by its mean andDx by the standard deviation. Th
following boundary values now appear to be plausible:

FIG. 3. ~a! Plots ofs̄/sc againstq54s 2̂/sc for various values of
the embedding dimensiond @see Eq.~28!#. Using these curves, the
maximum likelihood value of the variance can be determined fr
the cutoff value of the squared distancesc and the corresponding
sample means̄. ~b! Plots of the RHS of Eq.~29! multiplied by

AMd/2 as a function ofq54s 2̂/sc .
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56 1165INFLUENCE OF NOISE ON POWER-LAW SCALING . . .
r l5r nFl5sA2dFl ,

r h5r n1Dr nFh5s~A2d1Fh!, ~24!

whereFl,1 andFh.1 are constant factors. The choice
these factors is a trade-off between being safe concerning
validity of the Taylor-series approximation, on the one ha
and including enough data points, on the other hand. In S
IV we assume thats is much smaller thanr 0 such that both
regions of interest exist.

D. Estimation of the variance

Consider the region of small distancesr!r l . In this re-
gion, the value of the observed distance is almost only
termined by noise. Equation~9! then becomes

s'(
i51

d

e i
2 . ~25!

As mentioned before, the RHS of this equation divided
2s2 has ax2 distribution withd degrees of freedom. Thi
suggests that the smallest values of the squared distanc
be used to estimate the noise variances2.

We take a large sampleS5$si usi,sc% of measured
squared distances. The upper boundsc is the maximal value
of s, for which Eq.~25! holds. The PDF of each observatio
s is

f s~s!55 S s

4s2D d/221

4s2gS d2 , sc
4s2De

2s/4s2 ~0<s<sc!

0 ~s.sc!,

~26!
q

n

he
st
al

va
he
,
c.

e-

y

can

the cutoff version of the gamma distribution with scale p
rameter 1/4s2 and shape parameterd/2. The functiong, ap-
pearing in the normalizing constant, is the incomple
gamma function~see@16#, p. 260!. The estimation of both
parameters of a gamma distribution simultaneously fr
lowest-order statistics is described by Wilket al. @18#. Here
we have the special case that the shape parameterd/2 is
known.

We choose the maximum likelihood estimator~MLE!
~see, e.g.,@19#, p. 305!, which is found by maximizing the
log-likelihood function

L~s2!5 ln)
i
f s~si !

5C2M lngS d2 , sc
4s2D2M

d

2
lns22

1

4s2(
i
si ~27!

with respect tos2. HereC is a constant independent ofs2

andM :5#S, the number of samples smaller thansc . The
result is an implicit relation for the maximum likelihoo

estimators 2̂ for the variances2,

s̄

sc
5qF d22

e21/q

qd/2gS d2 , 1qD G , ~28!

where s̄ :5(1/M )( isi is the sample mean an

q:54s 2̂/sc . The theory of maximum likelihood estimator
also provides an expression for the minimum varian
bound, an asymptotic approximation for the variance o
MLE ~see@19#, p. 308!. The relative standard error (RRSE) of

s 2̂ is found to be
RRSE~s 2̂!:5
A Var~s 2̂!

s 2̂
'

1

AMF e21/q

qd/2gS d2 , 1qD S
d

2
212

1

q
2

e21/q

qd/2gS d2 , 1qD D 1
d

2G . ~29!
a-
an.
in

e
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he

y, a
Figure 3 shows graphs of the function on the RHS of E
~28! and the relative standard error of Eq.~29! for several
values of d. Given a value ofsc and the corresponding
sample means̄, the MLE ofs2 and the associated error ca
be read from these graphs.

The formulas above are valid if the only component in t
signal is the noise. In Sec. II E it is shown that, in the fir
order approximation, the value estimated here is re
s2d/(d2a) instead ofs2 itself. This implies that from an
observation ofs̄ and Eq.~28! an estimate forq is found and

s 2̂5
sc~d2a!

4d
q. ~30!

To check the result, this should be repeated for various
.

-
ly

l-

ues ofsc and d. For increasingd, the estimation will im-
prove because the influence of the noise is increased.

The graphs of Fig. 3~a! have a limitd/(d12) for large
q. In this region they run almost horizontally and the estim
tion is very sensitive to small changes in the sample me
The estimate is most reliable if it corresponds to a point
the steep part of the graph, say,q,1. Sosc cannot be taken
too small, which means thats2 cannot be estimated from th
leftmost part of the distribution. On the other hand,sc must
be small enough for Eq.~25! to hold. If sc is taken too big,
the s values are not governed by the noise with dimens
d, but by the scaling law of the underlying attractor. Then t
limiting value of s̄/sc will be a/(a12), independent of the
embedding dimension and the noise level. Consequentl
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constant value of the MLE of the variance can only be
pected in a limited region ofsc values.

E. Influence of scaling behavior on variance estimation

The determination of the variance of the noise by
maximum likelihood estimate is only correct in order
magnitude. There are two sources of error. First, the esti
tion is calculated from a limited number of observation
which is inevitable; this statistical error is given by Eq.~29!.
In addition, we have assumed that the distance on sm
scales is only determined by the noise; see Eq.~25!. The
is

q.
t

o

fro

a
fo

th
an

a
th

ft
al
b
is

on
n

ua
-

e

a-
,

all

scaling rule underlying the~unperturbed! values of the dis-
tance was neglected because the correlation dimension
unknown. However, it is possible to correct the result of t
estimation by taking into account the influence ofa.

To derive a MLE, the scaling function has to be tran
formed into a PDF by cutting off atsc and normalizing. If
only the zeroth- and first-order terms of the polynomial
Eq. ~20! are taken into account and the truncated resul
written as an exponential function having the same terms
to first order, only the first-order influence ofa is calculated.
The normalized PDF becomes
f s~s!55 S s

4s2D d/221

4s2S d

d2a D d/2gS d2 , d2a

d

sc
4s2De

2[ ~d2a!/d] ~s/4s2! ~0<s<sc!

0 ~s.sc!.

~31!
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This approximation is only valid if the first-order term
small compared to unity, so thats/4s2!d/(d2a). It is easy
to check, by comparing with the derivation following E
~26!, that the MLE fors2 resulting from this PDF is jus
(d2a)/d times the value calculated before. So (d2a)/d is
the ‘‘first-order correction factor.’’ This factor is close t
unity for larged, as expected. For smalld, it improves the
estimate of the variance considerably, as can be seen
the examples.

III. COMPUTATIONS
TO ANALYZE EXPERIMENTAL DATA

A typical time series consists of 1042105 data points. It is
sometimes necessary to omit the first fraction of the dat
avoid the influence of transients. The procedure is as
lows:

~i! Compose a series of reconstruction vectors from
time series by the method of delay-time embeddings
generate a sample of distances.

~ii ! Determine the MLE noise variance with Eq.~28! from
only the short distances.

~iii ! Use the short-distance data and long-distance d
together to estimate the variance and the dimension wi
nonlinear regression method.

In the second step, the actual distances are utilized. A
that, the data are sorted in equidistant bins. The actu
fitted observations are the number of occurrences in each
and the error is its square root, implying conventional Po
son statistics. The fits can be made for each embedding
mension separately, but also for all embedding dimensi
simultaneously. This section describes the computatio
implementation of these steps.

A. Reconstructing the attractor

In the ideal case, for example, with known system eq
tions, a multivariate time series with dimensiond is available
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that completely characterizes the state of the system. T

the state space vectorsxW (n)5@x1(n), . . . ,xd(n)#
T ~with

n51, . . . ,N) can be used in the dimension calculatio
and d is the proper embedding dimension. HereN is the
length of the recorded time series. For the practical case
univariate time seriesx(n), reconstruction vectorsxW (n)
5@x(n),x(n11), . . . ,x(n1d21)#T can be composed fo
various values ofd. In the case of reconstruction vectors, t
assumption that all noise contributions are independent is
strictly true because thekth coordinate ofxW (n) equals the
(k21)th coordinate ofxW (n11) (k52, . . . ,d) and so on.
Consequently, the corresponding noise contributions
equal. However, this will only affectr5uxW (m)2xW (n)u if
um2nu,d. These pairs are excluded from the distance sim
lations to avoid this ‘‘diagonal effect.’’

B. Inspecting the MLE for the noise variance

The MLE method above gives a pre-estimate of the no

variance. From a large sample of distances,s 2̂ is calculated
for various values ofsc by solving Eq.~28!. If we plot s

2̂ as
a function ofsc ~on a logarithmic scale!, three regions with
different behavior can be expected:~i! The left part of the
graphs~‘‘ sc too small’’! will be capricious as a consequenc
of the finite number of events simulated,~ii ! in the center of
the graphs we have the ‘‘plateau’’ we are looking for, a
~iii ! the right-hand part~‘‘ sc too big’’! is an exponentially
increasing function due to the underlying power-law scalin
The interpretation is done by visual inspection, which is s
ficient here, as it is only used for an initial guess.

C. Nonlinear fit procedure

In an experimental situation, a large sample of interpo
distances is generated. A histogram of these distances ca
compared to the scaling function found above:
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n~r !5c fr~r ! ~r,r 0!, ~32!

wheren(r ) is the number of distances betweenr2dr and
r . In addition to the two parameters of the scaling functi
a ands, also the factor of proportionalityc is unknown. It
depends on the embedding dimensiond and the bin width
dr .

Since the scaling function is essentially nonlinear in
parameters, a nonlinear fit procedure is required to determ
the parameters from the sample histogram. We have use
nonlinear fit programPASTIFIT, which is based on the algo
rithm of Marquardt@20#. As mentioned in Sec. II C, it is
possible to fit the data using the exact scaling function of
~18! as the model. Because Kummer’s function is not co
monly available, it is replaced by its integral representat
~see@16#, p. 505! in the implementation,

c fr~r !5
c

~2s!d2a

r d21

GS d2a

2 D
3E

0

1

e2~r2/4s2!tt ~d2a!/221~12t !a/221dt, ~33!

which involves numerical integration. This is a tim
consuming process when many data points are concerne
obtain a procedure that is easy to use on a routine basis
approximated scaling functions given in Eqs.~20! and ~21!
are applied. Because they are valid in certain regions, we
a piecewise nonlinear model function@21#. The fit can be
optimized by repeating it for various values of the regi
boundaries by adjusting the parametersFl and Fh in Eq.
~24!.

The global behavior of the PDF of the distances
sketched in Fig. 4. For a nonlinear fit to succeed, p
estimates~initial values! are needed, which are correct
least in order of magnitude. The initial value of the propo
tionality factor c is not very critical, but those ofa ands
are. We use~a! the usual estimate ofa from the slope of a
log-log plot and Eq.~1! and~b! the MLE of s2 as described
above.

FIG. 4. Sketch of the general behavior of the PDF of the int
point distances of the attractor of a chaotic system in the pres
of noise.
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IV. EXAMPLES

The following simulations and calculations have be
done with the help ofMATHEMATICA andMATLAB .

A. The Hénon map

A well-known example of a dynamical system exhibitin
chaotic behavior is the He´non map@22#. The correlation di-
mension of the He´non attractor is approximately 1.22. It ha
been calculated numerically by~among others! Grassberger
and Procaccia@5#.

The numerical experiment consisted of generating a t
series of 104 points by iteratingx(n)5121.4@x(n21)#2

10.3x(n22). To each point, independent normally distri
uted noise has been added. Subsequently, a large samp
squared distances has been generated by repeatedly pi
two pointsm,n at random, taking into account the abov
mentioned diagonal effect, and calculating the Euclidean
tance for various values ofd.

In Fig. 5, plots of the sample histograms of the distan
for s50.05 andd53, . . . ,6 areshown~jagged curves!. The
bin width is 0.002. The histograms contain approximat
0.39 up to 1.313106 events, smaller than 1, from a tota
sample size ofNp553106. A comparison with the scaling
functions requires appropriate normalization. The smo
curves in Fig. 5 are model functions, calculated from E
~18! and ~19!, with a51.22 ands50.05, and normalized
such that the area under the curve between 0 andr 0 is the
same as that of the histogram:

cE
0

r0
f r~r !dr5C~r 0!dr , ~34!

which givesc for eachd. HereC(r 0) is the number of dis-
tances smaller thanr 0. The graphs exhibit a good match wit
the sample histograms.

As an illustration, Fig. 6 shows~non-normalized! model
functions fora51.22 and various values ofd @with s50.05,
Fig. 6~a!#, and s @with d56, Fig. 6~b!#. Of course,s50
gives the unperturbed scaling functionr 0.22. All these func-
tions have been calculated by evaluation of the RHS of
~18! and the transformation of Eq.~19!. The influence on the

-
ce

FIG. 5. Comparison of sample histograms with the model fu
tions, for the He´non map (a51.22). In this examples50.05,
d53,4,5,6, andr 050.5. The sample sizeNp553106. The bin
width of the histograms is 0.002.
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1168 56HANS OLTMANS AND PETER J. T. VERHEIJEN
shape of the curves of changings is big. This is also caused
by the small value ofa ~compared tod).

In the case of an experimental time series,a ands are
unknown. This case can be simulated by regarding the av
able Hénon time series as a series of successive meas
ments of some physical variable, whose generating me
nism is investigated. The unknown parameters can then
determined by the nonlinear fit procedure with the piecew
approximation function.

The pre-estimate ofa is 1.3 from a plot as in Fig. 1. The
pre-estimate ofs2 is found from Fig. 7, which shows a plo
of the MLE ofs2 as a function ofsc ~on a logarithmic scale!.

The behavior of these curves has been explained befo
is observed that the plateau decreases with increasingd, in
agreement with the correction factord/(d2a) of Eq. ~30!.
The result isŝ2'0.0024, almost exactly the true value. Th
results of the piecewise nonlinear fit are listed in Table I. I
rewarding that the simulation parameters are recove
within a few percent of their actual values.

In this case, the data of Table I can be used for furt
analysis of the system. The factor of proportionalityc con-
tains information on the correlation entropyK, which is a
measure for the rate of divergence of initially nearby traj
tories@5,14,23#. It quantifies the unpredictability of time evo
lutions. For small Euclidean distancer and larged, we have
f r(r )5cra215c8e2Kdd2a/2r a21. Applying this to the data
gives K'0.30, which agrees reasonably with the valu
found in @5,23#.

FIG. 6. Examples of numerically calculated model function
with a51.22 for ~a! d53,4,5,6 ands50.05 and~b! s50 up to
0.05 with steps of 0.01 andd56.
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B. Fluidized bed data

The experimental time series that we have investiga
consists of pressure measurements in a cylindrical fluidi
bed ~FB! column. Recent studies@24–26# have suggested
that the hydrodynamics of a fluidized bed can be charac
ized by deterministic chaotic characteristics such as the~cor-
relation! dimension and the entropy. In this context, the
mension can be used to characterize the hydrodyna
regime.

In the experiment, the FB column, with a diameter of
cm, was filled with spherical polystyrene particles with
diameter of 0.56 mm and a density of 1100 kg/m3. Air was
used as fluidization gas. The fluidization velocity was
cm/s. The sample frequency of the pressure sensor was
Hz.

In the dimension analysis, we have used a time series
be denoted by ‘‘FB,’’ consisting of every tenth point of th
measured time series. So the time step between the p
dt is 0.02 s. The length of the time seriesN is again 104

points~or 200 s!. The first 500 points~10 s! of the time series
are plotted in Fig. 8. The same analysis as in the previ
example has been applied to the FB time series. Plots of
sample histograms of the distances and the MLE of the v
ance of the noise are shown in Fig. 9. The results of
piecewise nonlinear fit are summarized in Table I. To obt
a good fit for the FB time series, the data for different e
bedding dimensions had to be fitted separately; therefore
have different values ofa ands. A simultaneous fit using
the exact model function of Eq.~33! gives a'1.777 and
s'0.257, which is in the same order. These results indic
that in this case single fits at higher embedding dimens
tend to overestimate the correlation dimension and unde
timate the noise variance.

V. CONCLUDING REMARKS

It must be repeated that the above is an idealization
practice, the scaling rule is only an approximation of a p
of the real PDF of the distances. For large distance it is o
known that the PDF will have a maximum, beyond which

,

FIG. 7. Graphs of the ML estimate of the variance of the no
as a function ofsc , for various values ofd, for a time series of
104 points of the He´non map. The estimates have been calcula
from a random sample of 53106 interpoint distances~of which
approximately 1.313106 are smaller than 1 ford53 and
0.393106 for d56).
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TABLE I. Fitted parameter values for He´non time series with added noise (s50.05) and FB time series.

Time series d r0 Fl Fh c a s

Hénon 3 0.5 0.5 1.5 2991 1.18636 0.0039 0.05226 0.0003
4 1883
5 1204.2
6 799.0

FB 3 2.0 0.6 1.2 2174 1.64606 0.0073 0.20466 0.0034
4 1357 1.89466 0.0089 0.17986 0.0033
5 817.4 2.24666 0.0111 0.15616 0.0047
6 485.4 2.55956 0.0153 0.16106 0.0063
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will decrease to zero, as in Fig. 4. For small distances the
always the problem of discretization~causing ‘‘steps’’ in the
correlation integral curves; see@3#!. Furthermore, in practice
noise can be correlated or depending on the measureme

By inspection of the graphs of Fig. 2, it can be observ
that althoughf w deviates considerably fromg, the function
f s̃ approximatesg very closely ford'a. ~Exact equality
cannot be achieved becausea is generally a noninteger.!
This effect was explained in Eqs.~22! and ~23!. The conse-
quence is that, if the embedding dimension is chosen as c
to a as possible~i.e., d5 da e), the effect of noise on the
scaling function is minimized. Sauer and Yorke@27# proved
that theoretically, in reconstructing an attractor from expe
mental data,d.a is indeed a sufficient condition for th
power law to hold. Numerical limitations caused by lack
data are treated by Dinget al. @28#.

Smith @29# has derived an approximation of the corre
tion integral based on a linearization of system equatio
His approach is different, but he comes to an integral form
Eq. ~18!. This work shows that his approxiamtion is a spec
case of a more generally valid equation. A similar approa
is followed by Schreiber@30#, who derives an analytic ex
pression for the perturbation of the correlation dimension
a function ofr , using theL` norm. The parameters is then
determined by fitting this function to the data for vario
values ofd. Another interesting algorithm is the one by Dik
@23#. Here a modified definition of the correlation integra
containing a kernel function specially tailored to Gauss
noise and having the same power law property as the ‘‘s
dard’’ correlation integral, is used to fits, a, andK.

From the numerical experiments, the following conc
sions can be drawn.

FIG. 8. Detail of the time series of pressure measurements
cylindrical fluidized bed. The time interval is 0.02 s.
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~i! The expression of Eq.~18! describes the reality in the
idealized case of perfect scaling and normally distribu
noise ~if the standard deviation is a fraction of the scalin
region boundaryr 0).

~ii ! In the Hénon example, it is observed~see Fig. 5! that
the width of the scaling region increases with increasing e
bedding dimension, approximately withAd. This is under-
standable because Euclidean distances calculated from
same data are on average proportional toAd. Therefore, it
could be sensible to user 0(d)5r 1Ad, with r 1 fixed.

~iii ! In the fluidized bed example, the correlation dime
sion does not converge. For these data the model is not
rect. This could mean that the FB system cannot be descr

a

FIG. 9. ~a! Graphs of sample data histograms for the FB tim
series. The bin width of the histograms is 0.004.~b! Graphs of the
ML estimate of the variance of the noise as a function ofsc , for
various values ofd, for the same time series.
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by a low-dimensional chaotic attractor or that the noise is
a different nature than assumed here.

~iv! The nonlinear fit procedure based on limiting beha
ior is a fast and useful method to recover the values ofa and
s. However, the method can still be cumbersome in cho
ing the limits of the validity regions. Nonlinear regressio
with the complete function@Eq. ~33!# is then an alternative.

The case of autocorrelated~or even dependent! noise
could be investigated separately, but it is obvious from
foregoing that the expressions involved will be very comp
s
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cated. More advanced statistical methods such as those
by Cheng and Tong@31# have to be applied.
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